Contributive sources analysis: A measure of neural networks' contribution to brain activations
نویسندگان
چکیده
General linear model (GLM) is a standard and widely used fMRI analysis tool. It enables the detection of hypothesis-driven brain activations. In contrast, Independent Component Analysis (ICA) is a powerful technique, which enables the detection of data-driven spatially independent networks. Hybrid approaches that combine and take advantage of GLM and ICA have been proposed. Yet the choice of the best method is still a challenge, considering that the techniques may yield slightly different results regarding the number of brain regions involved in a task. A poor statistical power or the deviance from the predicted hemodynamic response functions is possible cause for GLM failures in extracting some activations picked by ICA. However, there might be another explanation for different results obtained with GLM and ICA approaches, such as networks cancelation. In this paper, we propose a new supplementary method that can give more insight into the functional data as well as help to clarify inconsistencies between the results of studies using GLM and ICA. We introduce a contributive sources analysis (CSA), which provides a measure of the number and the strength of the neural networks that significantly contribute to brain activation. CSA, applied to fMRI data of anti-saccades, enabled us to verify whether the brain regions involved in the task are dominated by a single network or serve as key nodes for particular networks interaction. Moreover, when applying CSA to the atlas-defined regions-of-interest, results indicated that activity of the parieto-medial temporal network was suppressed by the eye field network and the default mode network. Thus, this effect of networks cancelation explains the absence of parieto-medial temporal activation within the GLM results. Together, those findings indicate that brain activations are a result of complex network interactions. Applying CSA appears to be a useful tool to reveal additional findings outside the scope of the "fixed-model" GLM and data-driven ICA approaches.
منابع مشابه
Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods
Introduction: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. Methods: We studied three groups o...
متن کاملUsing the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting
The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models. Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...
متن کاملSEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملDifferent olfactory perception in heroin addicts: an fMRI study
Background: Addiction as a mental disorder has large adverse effects on brain health. It alters brain structure and deteriorates brain functionality. Impairment of brain cognition in drug addiction is illustrated in many previous works; however, olfactory perception in addiction and in particular the neuronal mechanisms of it are rarely studied. Methods: In this experiment, we recruited 20 he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 76 شماره
صفحات -
تاریخ انتشار 2013